- Home
- Copper
To measure the amount of copper in your blood, urine, or liver tissue; to help diagnose and monitor Wilson disease; sometimes to identify copper deficiency or excess
When you have jaundice, fatigue, abdominal pain, behavioral changes, tremors, or other symptoms that a healthcare practitioner thinks may be due to Wilson disease or, rarely, to copper deficiency or excess; at intervals when you are being treated for a copper-related condition
A blood sample is obtained by inserting a needle into a vein and/or a 24-hour urine sample is collected. Care must be taken, especially with a 24-hour urine sample, not to contaminate the sample with an external source of copper. Talk to your healthcare practitioner and/or the laboratory that will perform the test about necessary precautions. If a urine or blood copper test result is higher than expected, your healthcare practitioner may have the test repeated with a new sample to confirm the findings. Sometimes a healthcare practitioner performs a liver biopsy.
None
Copper is an essential mineral that the body incorporates into enzymes. These enzymes play a role in the regulation of iron metabolism, formation of connective tissue, energy production within cells, the production of melanin (the pigment that produces skin color), and the function of the nervous system. This test measures the amount of copper in the blood, urine, or liver (hepatic).
Copper is found in many foods including nuts, chocolate, mushrooms, shellfish, whole grains, dried fruits, and liver. Drinking water may acquire copper as it flows through copper pipes, and food may acquire it when people cook or serve food in copper dishes.
Both excess and deficiency of copper are rare. Wilson disease, a rare inherited disorder, can lead to excess storage of copper in the eyes, liver, brain, and other organs. Copper excess (toxicity) can also occur with absorbing large amounts over a short period of time (acute exposure) or various amounts over a long period (chronic exposure).
Copper deficiency may occasionally occur in conditions associated with severe malabsorption, such as cystic fibrosis and celiac disease, and in infants exclusively fed cow-milk formulas. It can also occur in malnourished children as well as people who megadose zinc-containing vitamins.
A rare X-linked genetic condition called Menkes kinky hair syndrome leads to copper deficiency in the brain and liver of affected infants. The disease, which affects primarily males, is associated with seizures, delayed development, abnormal artery development in the brain, and unusual gray brittle kinky hair.
Copper testing is primarily used to help diagnose Wilson disease, a rare inherited disorder that can lead to excess storage of copper in the liver, brain, and other organs. Less commonly, a copper test may be used to detect copper excess due to another condition, to detect a copper deficiency, or to monitor treatment for one of these conditions.
Typically, a total blood copper test is ordered along with a ceruloplasmin level. If the results from these tests are abnormal or unclear, then they may be followed by a 24-hour urine copper test to measure copper elimination and/or a copper test performed on a liver biopsy to evaluate copper storage in the liver.
Sometimes a free (unbound) blood copper test is also ordered. If Wilson disease is suspected, genetic testing may be performed to detect mutations in the ATP7B gene. However, these tests have limited availability and are usually performed in special reference or research laboratories.
Rarely, a copper test may be used to help diagnose Menkes kinky hair syndrome, a rare inherited disorder of copper transport dysfunction (see below).
One or more copper tests are ordered along with ceruloplasmin when you have signs and symptoms that a healthcare practitioner suspects may be due to Wilson disease, excess copper storage, or copper poisoning. These signs and symptoms may include:
Testing may be ordered when you have signs and symptoms that may be due to a copper deficiency, such as:
One or more of the copper tests may be ordered periodically when monitoring is recommended.
A hepatic (liver) copper test may be ordered to further investigate copper storage when copper and ceruloplasmin results are abnormal or equivocal.
Copper test results must be evaluated in context and are usually compared to ceruloplasmin levels. Abnormal copper results are not diagnostic of a specific condition; they indicate the need for further investigation. Interpretation can be complicated by the fact that ceruloplasmin is an acute phase reactant – it may be elevated whenever inflammation or severe infections are present. Both ceruloplasmin and copper are also increased during pregnancy and with estrogen and oral contraceptive use.
Test results may include:
Test | Wilson Disease | Copper Toxicity | Menkes Disease (Kinky Hair Syndrome) | Copper Deficiency |
Copper, blood | Low but may be normal | High | Low | Low |
Copper, serum free | High | High | Low | Low |
Ceruloplasmin | Low but may be normal | High | Low | Low |
Copper, urine | Very high | High | Low | Low |
Copper, liver/hepatic* | Positive but, depending on the site sampled, may be negative | High or normal | Low | Low |
*Excess copper in the liver is often unevenly distributed and may not be detected in a sample.
If you are being treated for Wilson disease or copper toxicity with drugs that bind copper (chelators), then your 24-hour urine copper levels may be high until body copper stores decrease. Eventually, blood copper and 24-hour urine copper levels should return to normal.
If you are treated for a condition related to copper deficiency and your ceruloplasmin and total copper levels rise, then the condition is likely responding to the treatment.
These tests provide complementary information and your healthcare practitioner will determine which tests are necessary to evaluate your condition.
In most cases, a regular diet satisfies the body's requirements for copper. Talk to your healthcare practitioner before taking any supplements or changing your diet.
If Wilson disease is strongly suspected based upon blood, urine, and imaging test results, a liver biopsy may be performed to evaluate how much copper is in your liver and the extent of liver damage.
Menkes kinky hair syndrome, also called copper transport disease, is a rare inherited disorder that causes a deficiency in copper. The syndrome is caused by mutations in the ATP7A gene located on the X chromosome. It is passed from parent to child in an X-linked recessive manner. This means that girls must inherit two copies of the mutated gene in order to be affected. Because boys only have one X chromosome, they can be affected if the mutation is present on the one X chromosome, making the condition much more common in males.
The mutation leads to uneven distribution of copper in the body. It may build up in tissues of the intestines and kidneys, for example, but may be deficient in areas such as the brain. Symptoms of the syndrome typically develop in infancy and many children die by age 3. Signs and symptoms include sparse, kinky hair, failure to grow at an expected rate and developmental delay, nervous system deterioration, weak muscle tone and seizures. The incidence of this syndrome is about 1 in 100,000 infants.
Medications such as carbamazepine and phenobarbital can increase blood copper levels. They may also be elevated with rheumatoid arthritis and with some cancers and decreased with a variety of conditions associated with malabsorption, such as cystic fibrosis.
Total serum copper concentrations are normally low at birth, rise over the next few years, peak, and then decline slightly to a relatively stable level.
Sources Used in Current Review
Sloan, Joshua DO, Feyssa, Eyob, MD, MPH, FACP, Staros, Eric B, MD. (2017 February 16) Copper. Medscape. Available online at https://emedicine.medscape.com/article/2087780-overview#showall. Accessed February 2020.
Menkes Syndrome. U.S. National Library of Medicine Genetics Home Reference. Available online at https://ghr.nlm.nih.gov/condition/menkes-syndrome. Accessed February 2020.
Wilson Disease. National Organization for Rare Disorders. Available online at https://rarediseases.org/rare-diseases/wilson-disease/. Accessed February 2020.
Copper, Serum. Mayo Clinic Laboratories. Available online at https://www.mayocliniclabs.com/test-catalog/Clinical+and+Interpretive/8612. Accessed February 2020.
Total Copper (Blood). University of Rochester Medical Center. Available online at https://www.urmc.rochester.edu/encyclopedia/content.aspx?contenttypeid=167&contentid=total_copper_blood. Accessed February 2020.
Tavill, Anthony S. (2017 August) MD. Wilson's Disease. Cleveland Clinic Center for Continuing Education. Available online at http://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/hepatology/wilson-disease/. Accessed February 2020.
Sources Used in Previous Reviews
Clarke, W. and Dufour, D. R., Editors (2006). Contemporary Practice in Clinical Chemistry. AACC Press, Washington, DC. Bankson, D. Chapter 35, Vitamins and Trace Elements: Assessment of Micronutrient Status through Laboratory Testing. Pp. 399 410.
Wu, A. (2006). Tietz Clinical Guide to Laboratory Tests, Fourth Edition. Saunders Elsevier, St. Louis, Missouri. Pp. 292-295.
Alexander, D. (2006 March 2, Updated). 24-hour urine Copper/Cu. MedlinePlus Medical Encyclopedia [On-line information]. Available online at http://www.nlm.nih.gov/medlineplus/ency/article/003604.htm. Accessed 7/21/07.
McGee, W. (2007 March 2, Updated). Copper in diet. MedlinePlus Medical Encyclopedia [On-line information]. Available online at http://www.nlm.nih.gov/medlineplus/ency/article/002419.htm. Accessed 7/25/07.
Perez, E. (2006 October 23, Updated). Copper poisoning. MedlinePlus Medical Encyclopedia [On-line information]. Available online at http://www.nlm.nih.gov/medlineplus/ency/article/002496.htm. Accessed 7/25/07.
(2004). Copper. ATSDR Division of Toxicology ToxFAQs [On-line information]. Available online at http://www.atsdr.cdc.gov/tfacts132.html. Accessed 7/25/07.
(2007 February 13, Updated). Menkes Disease Information Page. NINDS [On-line information]. Available online at http://www.ninds.nih.gov/disorders/menkes/menkes.htm. Accessed 7/25/07.
(2007 February 14). Zellweger Syndrome Information Page. NINDS [On-line information]. Available online at http://www.ninds.nih.gov/disorders/zellweger/zellweger.htm. Accessed 7/25/07.
Thomas, Clayton L., Editor (1997). Taber's Cyclopedic Medical Dictionary. F.A. Davis Company, Philadelphia, PA [18th Edition]. Pp. 441.
Copper. Merck Manual of Medical Information Second Home Edition [On-line information]. Available online at http://www.merck.com/mmhe/print/sec12/ch155/ch155c.html. Accessed 7/17/07.
Das, S. and Ray, K. (2006 October 13). Wilsons Disease: An Update. Medscape from Nature Clinical Practice Neurology [On-line information]. Available online at http://www.medscape.com/viewarticle/543866. Accessed 7/27/07.
Turnlund, J. (2007 July, Reviewed). Copper. Linus Pauling Institute Micronutrient Research for Optimum Health, Micronutrient Information Center, Oregon State University [On-line information]. Available online at http://lpi.oregonstate.edu/infocenter/minerals/copper/. Accessed 9/16/07.
(2006 August 1). Copper. MedlinePlus Health Information, Herbs and Supplements [On-line information]. Previously available online at http://www.nlm.nih.gov/medlineplus/druginfo/natural/patient-copper.html. Accessed 9/16/07.
Barnes, N. et. al. (2005). The copper-transporting ATPases, menkes and wilson disease proteins, have distinct roles in adult and developing cerebellum. Medscape from J Biol Chem. 2005; 280(10): 9640-5 (ISSN: 0021-9258) [On-line abstract]. Available online at http://www.medscape.com/medline/abstract/15634671?src=emed_ckb_ref_0. Accessed 9/16/07.
Shim, H. and Harris, Z. L. (2003 May). Supplement: 11th International Symposium on Trace Elements in Man and Animals, Genetic Defects in Copper Metabolism. J. Nutr. 133: 1527S-1531S [On-line journal article]. Available online at http://jn.nutrition.org/cgi/content/full/133/5/1527S. Accessed 9/16/07.
Greco, F. (Updated 2009 January 20). 24-hour urine copper test. MedlinePlus Medical Encyclopedia [On-line information]. Available online at http://www.nlm.nih.gov/medlineplus/ency/article/003604.htm. Accessed December 2010.
McMillin, G. and Roberts, W. (Updated 2010 May). Wilson Disease. ARUP Consult [On-line information]. Available online at http://www.arupconsult.com/Topics/WilsonDz.html?client_ID=LTD#tabs=0. Accessed November 2010.
Haldeman-Englert, C. (Updated 2010 September 10). Wilson's disease. MedlinePlus Medical Encyclopedia [On-line information]. Available online at http://www.nlm.nih.gov/medlineplus/ency/article/000785.htm. Accessed November 2010.
Johnson, L. (Revised 2008 August). Copper. Merck Manual for Healthcare Professionals [On-line information]. Available online at http://www.merckmanuals.com/professional/sec01/ch005/ch005c.html?qt=wilson disease&alt=sh#sec01-ch005-ch005c-534. Accessed November 2010.
McMillin, G. et. al. (2009 August 25). Direct Measurement of Free Copper in Serum or Plasma Ultrafiltrate. Medscape Today from American Journal of Clinical Pathology. 2009;131(2):160-165. [On-line information]. Available online at http://www.medscape.com/viewarticle/707416. Accessed November 2010.
Kaler, S. (Updated 2009 May 28). Menkes Kinky Hair Disease. eMedicine [On-line information]. Available online at http://emedicine.medscape.com/article/946985-overview. Accessed November 2010.
(© 1995-2010). Unit Code 8612: Copper, Serum. Mayo Clinic, Mayo Medical Laboratories [On-line information]. Available online at http://www.mayomedicallaboratories.com/test-catalog/Overview/8612. Accessed November 2010.
Wu, A. (© 2006). Tietz Clinical Guide to Laboratory Tests, 4th Edition: Saunders Elsevier, St. Louis, MO. Pp 292-295.
Tietz Textbook of Clinical Chemistry and Molecular Diagnostics. Burtis CA, Ashwood ER, Bruns DE, eds. St. Louis: Elsevier Saunders; 2006, Pp 556-559, 1126-1130, 1378-1379.
Sloan, J. and Feyssa, E. (2014 March 4). Copper. Medscape Drugs & Diseases [On-line information]. Available online at http://emedicine.medscape.com/article/2087780-overview. Accessed December 2014.
Johnson, L. (Revised 2013 April). Copper Deficiency and Toxicity. Merck Manual Professional Edition [On-line information]. Available online through http://www.merckmanuals.com. Accessed December 2014.
Haldeman-Englert, C. (2013 January 4). 24-hour urine copper test. MedlinePlus Medical Encyclopedia [On-line information]. Available online at http://www.nlm.nih.gov/medlineplus/ency/article/003604.htm. Accessed December 2014.
(© 1995–2014). Copper, Serum. Mayo Clinic Mayo Medical Laboratories [On-line information]. Available online at http://www.mayomedicallaboratories.com/test-catalog/Overview/8612. Accessed December 2014.
Strathmann, F. (Updated 2014 March). Trace Minerals. ARUP Consult [On-line information]. Available online at http://www.arupconsult.com/Topics/TraceMinerals.html?client_ID=LTD#tabs=0. Accessed December 2014.
Gilroy, R. (Updated 2014 May 2). Wilson Disease. Medscape Drugs & Diseases [On-line information]. Available online at http://emedicine.medscape.com/article/183456-overview. Accessed December 2014.
(Last updated: 3/8/2011) Genetic and Rare Diseases Information Center (GARD). Menkes Disease. Available online at http://ghr.nlm.nih.gov/condition/menkes-syndrome. Accessed January 2015.
(Reviewed March 2009) Genetics Home Reference. Menkes Syndrome. Available online at http://rarediseases.info.nih.gov/gard/1521/menkes-disease/resources/1. Accessed January 2015.
(Reviewed January 2014) Linus Pauling Institute. Micronutrient Information Center, Copper. Available online at http://lpi.oregonstate.edu/infocenter/minerals/copper/#deficiency. Accessed January 2015.