Protein C Deficiency Profile

CPT: 85302; 85303
Print Share

Test Includes

Protein C antigen; protein C, functional


Special Instructions

If the patient's hematocrit exceeds 55%, the volume of citrate in the collection tube must be adjusted. Refer to Coagulation Collection Procedures for directions.


Expected Turnaround Time

2 - 4 days


Related Information


Related Documents

For more information, please view the literature below.

Procedures for Hemostasis and Thrombosis: A Clinical Test Compendium


Specimen Requirements


Specimen

Plasma, frozen


Volume

1 mL (each tube)


Container

Blue-top (sodium citrate) tubes (2 tubes)


Collection

Citrated plasma samples should be collected by double centrifugation. Blood should be collected in a blue-top tube containing 3.2% buffered sodium citrate.1 Evacuated collection tubes must be filled to completion to ensure a proper blood to anticoagulant ratio.2,3 The sample should be mixed immediately by gentle inversion at least six times to ensure adequate mixing of the anticoagulant with the blood. A discard tube is not required prior to collection of coagulation samples, except when using a winged blood collection device (ie, "butterfly"), in which case a discard tube should be used.4,5 When noncitrate tubes are collected for other tests, collect sterile and nonadditive (red-top) tubes prior to citrate (blue-top) tubes. Any tube containing an alternate anticoagulant should be collected after the blue-top tube. Gel-barrier tubes and serum tubes with clot initiators should also be collected after the citrate tubes. Centrifuge for 10 minutes and carefully remove 2/3 of the plasma using a plastic transfer pipette, being careful not to disturb the cells. Deliver to a plastic transport tube, cap, and recentrifuge for 10 minutes. Use a second plastic pipette to remove the plasma, staying clear of the platelets at the bottom of the tube. Transfer the plasma into a LabCorp PP transpak frozen purple tube with screw cap (LabCorp No. 49482). Freeze immediately and maintain frozen until tested.

Please print and use the Volume Guide for Coagulation Testing to ensure proper draw volume.


Storage Instructions

Freeze.


Patient Preparation

Avoid warfarin (Coumadin®) therapy for two weeks and heparin therapy for two days prior to the test. Do not draw from an arm with a heparin lock or heparinized catheter.


Causes for Rejection

Gross hemolysis; clotted specimen; frozen specimen thawed in transit; improper labeling


Test Details


Use

Confirmation and characterization of protein C deficiency


Limitations

Individuals with heterozygous PC deficiency may have low normal PC levels.7 Treatment with warfarin decreases the levels of vitamin K-dependent factors including PC. PC levels start to drop after six hours of warfarin treatment and do not regain pretreatment levels until generally two weeks after cessation of therapy. Elevated factor VIII levels, as can be seen in acute phase reaction, can normalize the aPTT and effectively reduce PC levels.6 PC levels can be falsely low in patients with the factor VLeiden mutation. PC levels can become depleted as the result of activation of coagulation limiting the utility of testing for congenital PC deficiency during the immediate convalescent period after a thrombotic event.7 Heparin therapy up to 1 unit/mL does not affect PC levels.7 This test should not be used for patients receiving thrombin inhibitors such as hirudin and argatroban.6


Methodology

PC antigen: enzyme immunoassay (EIA)

PC activity: A specific enzyme extracted from the venom of Agkistrodon c. contortrix is used to activate PC in the patient sample. All other factors required for normal aPTT are supplied in the reagent. The activated protein C inhibits factors V and VIII in the reagent and the resultant prolongation of the aPTT-based clotting time is proportional to plasma PC activity.


Reference Interval

PC levels tend to be lower in newborns but typically reach adult ranges by six months of age.6 Levels in some children remain low until up to 16 years of age.6


Additional Information

Protein C (PC) is a vitamin K-dependent plasma protein that is synthesized by the liver as an inactive precursor.7-9 This protein is then further transformed into activated PC by a complex of thrombin and the endothelial factor, thrombomodulin, that is bound to phospholipid membrane in a calcium-dependent manner. aPC regulates the coagulation process by inactivating factors Va and VIIIa. Protein S, another vitamin K-dependent protein, serves as an essential cofactor of aPC for the inactivation of factors Va and VIIIa. In inhibiting these factors, PC serves to limit thrombus extension, and thus acts as a major regulator of the coagulation process.

Congenital protein C deficiency: Congenital PC deficiency has been estimated to occur in approximately 3 out of 1000 individuals.7,8 Between 2% and 5% of cases of recurrent venous thrombosis are related to congenital PC deficiency.7 Nearly 50% of individuals with heterozygous PC deficiency and 10% of their relatives experience thrombotic episodes by age 45. Initial thrombotic events frequently occur between 20 and 30 years of age. The probabilities of thrombosis or pulmonary emboli increase dramatically when PC activity levels fall to <50%.7 Thrombosis can sometime occur at unusual sites, including mesenteric and axillary veins. Recurrent thrombotic events are common.7 In the majority of cases, thrombosis can be linked to trauma, surgery, pregnancy oral contraceptive usage, or other risk factors. However, thrombosis can occur spontaneously with no precipitating events or other known risk factors in about 33% of cases.7

Congenital PC deficiency can be classified as either type I or type II.9 Type I deficiency results from a quantitative reduction in PC production, resulting in a simultaneous decrease of both the functional and antigenic levels of PC. In type II deficiency, PC antigen concentration is normal but its activity is diminished because the PC is dysfunctional due to genetic defect. This is reflected by a diminished PC activity in the context of normal PC antigen levels. Neonates born with homozygous or doubly heterozygous PC deficiency suffer from DIC or purpura fulminans of the newborn, devastating conditions requiring immediate treatment.8

Acquired protein C deficiency: Acquired PC deficiency occurs more frequently than congenital deficiency.7 PC levels can be transiently diminished after a thrombotic event or surgery. Oral anticoagulant therapy with warfarin will lower PC levels. Vitamin K deficiency, due to dietary insufficiency or malabsorption, will also lead to reduced PC levels. Acquired deficiency can be found in individuals with disseminated intravascular coagulation (DIC) and sepsis. Severe hepatic disorders (hepatitis, cirrhosis, etc), renal failure, malignancy, and inflammatory bowel disease can lead to diminished PC levels.7 Drug therapy with L-asparaginase or fluorouracil can also reduce PC levels.

In some cases, warfarin anticoagulation of thrombotic patients with heterozygous PC deficiency will induce skin necrosis due to the rapid drop in already low PC activity.7,9


Footnotes

1. Adcock DM, Kressin DC, Marlar RA. Effect of 3.2% vs 3.8% sodium citrate concentration on routine coagulation testing. Am J Clin Pathol. 1997Jan; 107(1):105-110. 8980376
2. Reneke J, Etzell J, Leslie S, NG VL, Gottfried EL. Prolonged prothrombin time and activated partial thromboplastin time due to underfilled specimen tubes with 109 mmol/L (3.2%) citrate anticoagulant. Am J Clin Pathol. 1998 Jun; 109(6):754-757. 9620035
3. National Committee for Clinical Laboratory Standardization. Collection, Transport, and Processing of Blood Specimens for Coagulation Testing and General Performance of Coagulation Assays; Approved Guideline. 5th ed. Villanova, Pa: NCCLS; 2008. Document H21-A5:28(5).
4. Gottfried EL, Adachi MM. Prothrombin time and activated partial thromboplastin time can be performed on the first tube. Am J Clin Pathol. 1997 Jun; 107(6):681-683. 9169665
5. McGlasson DL, More L, Best HA, Norris WL, Doe RH, Ray H. Drawing specimens for coagulation testing: Is a second tube necessary? Clin Lab Sci. 1999 May-Jun; 12(3):137-139. 10539100
6. Van Cott EM, Laposata M. Coagulation. In: Jacobs DS, DeMott WR, and Oxley DK eds. Laboratory Test Handbook With Key Word Index. Hudson, Ohio: Lexi-Comp; 2001: 327-358.
7. Adcock DM, Bethel MA, Macy PA. Coagulation Handbook. Aurora, Colo: Esoterix−Colorado Coagulation; 2006.
8. Zwicker J, Bauer KA. Thrombophilia. In: Kitchens CS, Alving BM, Kessler CM, eds.Consultative Hemostasis and Thrombosis. Philadelphia, Pa: WB Saunders Co; 2002:181-196.
9. Triplett DA. Thrombophilia. In: McClatchey KD, ed. Clinical Laboratory Medicine. 2nd ed. Philadelphia, Pa: Lippincott Williams and Wilkins; 2002:1050-1056.

LOINC® Map

Order Code Order Code Name Order Loinc Result Code Result Code Name UofM Result LOINC
283655 Protein C Deficiency Profile 080465 Protein C Antigen % 27820-0
283655 Protein C Deficiency Profile 117705 Protein C-Functional % 27819-2

For Providers

Please login to order a test

Order a Test

© 2021 Laboratory Corporation of America® Holdings and Lexi-Comp Inc. All Rights Reserved.

CPT Statement/Profile Statement

The LOINC® codes are copyright © 1994-2021, Regenstrief Institute, Inc. and the Logical Observation Identifiers Names and Codes (LOINC) Committee. Permission is granted in perpetuity, without payment of license fees or royalties, to use, copy, or distribute the LOINC® codes for any commercial or non-commercial purpose, subject to the terms under the license agreement found at https://loinc.org/license/. Additional information regarding LOINC® codes can be found at LOINC.org, including the LOINC Manual, which can be downloaded at LOINC.org/downloads/files/LOINCManual.pdf