Factor IX Activity

CPT: 85250
Print Share

Synonyms

  • Antihemophilic Factor B

Special Instructions

If the patient's hematocrit exceeds 55%, the volume of citrate in the collection tube must be adjusted. Refer to Coagulation Collection Procedures for directions.


Expected Turnaround Time

2 - 3 days


Related Information


Related Documents

For more information, please view the literature below.

Procedures for Hemostasis and Thrombosis: A Clinical Test Compendium


Specimen Requirements


Specimen

Plasma, frozen


Volume

1 mL


Container

Blue-top (sodium citrate) tube


Collection

Blood should be collected in a blue-top tube containing 3.2% buffered sodium citrate.1 Evacuated collection tubes must be filled to completion to ensure a proper blood-to-anticoagulant ratio.2,3 The sample should be mixed immediately by gentle inversion at least six times to ensure adequate mixing of the anticoagulant with the blood. A discard tube is not required prior to collection of coagulation samples unless the sample is collected using a winged (butterfly) collection system. With a winged blood collection set a discard tube should be drawn first to account for the dead space of the tubing and prevent under-filling of the evacuated tube.4,5 When noncitrate tubes are collected for other tests, collect sterile and nonadditive (red-top) tubes prior to citrate (blue-top) tubes. Any tube containing an alternative anticoagulant should be collected after the blue-top tube. Gel-barrier tubes and serum tubes with clot initiators should also be collected after the citrate tubes.

Please print and use the Volume Guide for Coagulation Testing to ensure proper draw volume.


Storage Instructions

Freeze.


Patient Preparation

Ideally, the patient should not be on anticoagulant therapy. Avoid warfarin (Coumadin®) therapy for two weeks prior to the test and heparin, direct Xa, and thrombin inhibitor therapies for about three days prior to testing. Do not draw from an arm with a heparin lock or heparinized catheter.


Causes for Rejection

Severe hemolysis; improper labeling; clotted specimen; specimen diluted with IV fluids; samples thawed in transit; improper sample type; sample out of stability


Test Details


Use

Evaluate an isolated, prolonged aPTT and to document specific factor IX deficiency6-9


Limitations

Direct Xa or thrombin inhibitor therapy may cause factitiously low results. Factor IX levels can be diminished in severe liver disease and in vitamin K-deficient patients. This can affect the accuracy of the test in diagnosing hemophilia. Factor IX levels should not be used to determine the carrier status of females. Genetic testing should be used for this purpose. Factor IX inhibitors (both alloantibodies that develop after replacement therapy and autoantibodies that develop spontaneously) can result in falsely low factor IX levels.10,11


Methodology

Factor IX activity is determined utilizing an aPTT-based one-stage clotting time assay. Factor IX-depleted plasma is used as the substrate, and the clotting time with the patient plasma is compared to the clotting time of normal pooled plasma.


Additional Information

Factor IX is a 72 kilodalton vitamin K-dependent glycoprotein proenzyme that is produced by the liver.6 Factor IX's plasma concentration is 3-5 mg/mL and half-life is about 24 hours.6 Factor IX deficiency should be suspected when a patient with excessive bleeding has a normal protime (PT) and an extended activated partial thromboplastin time (aPTT).

Hemophilia B, or Christmas disease, occurs as the result of congenital deficiency of factor IX.6,7 Clinical features of hemophilia B are the same as for hemophilia A which is caused by factor VIII deficiency (see Factor VIII Activity [086264]). Hemophilia B is less common than hemophilia A, occurring in approximately 1 of every 30,000 live male births.7 The prevalence is significantly higher in Amish and East Indian populations.8 This condition is transmitted as an X chromosome-linked hereditary disorder.7 The majority of cases occur in men whose mothers are carriers of the genetic defect. A subtype of hemophilia B, hemophilia B Leiden, is characterized by altered developmental expression of factor IX such that plasma factor IX levels may be <1% of normal during childhood, but after puberty may gradually rise to a maximum of 70% of normal.12 Hemophilia B can also occur as the result of spontaneous mutations of the factor IX gene locus.7 Female carriers of hemophilia B may rarely present with excessive bleeding.7 Hemophilia symptoms can also occur in female carriers that have a high degree of lyonization of the factor X alleles.7 Females with Turner syndrome, karyotype XO, can also be symptomatic.7

The severity of hemophilia B can be defined by the level of factor IX activity.7,8 Severe hemophilia is associated with a factor IX level of <1%. Moderate hemophilia B occurs with factor IX levels of 1% to 5% and mild hemophilia has factor IX levels >5%.

Patients with hemophilia B can present with any of a number of bleeding manifestations.6,7 Often, infants with severe hemophilia are first diagnosed during the neonatal period because of excessive bleeding after circumcision or due to cord necrosis.7 Hemophilic infants also frequently suffer from intracranial hemorrhage or scalp hematomas. Spontaneous hemarthroses, a common symptom of hemophilias, typically do not occur until the child starts walking.7,8 Hematomas can often be observed at the sites of intramuscular injections for vaccination or medication. The most common sites of spontaneous bleeding in patients with severe hemophilia are involve the joints and muscles. Recurrent bleeding leads to chronic muscle injury and degeneration of the joint tissue.6,7 Gastrointestinal bleeding can occur in approximately 10% of hemophiliacs.7 Males with mild to moderate hemophilia and female carriers may have an increased bleeding tendency, especially following surgery or trauma.8

Acquired factor IX deficiency can occur as the result of oral anticoagulant therapy or with vitamin K deficiency.6,8 Individuals with advance liver disease can have a generalized decrease in coagulation factors, including factor IX.

Elevation of factor IX, if persistent, has been associated with approximately a twofold increased risk for venous thrombosis.9 The basis for this increased risk is not well understood and the clinical cutoff for risk assessment has yet to be established.9

Hemophilia B patients receiving replacement products can develop inhibitors to factor IX in approximately 3% of cases, due to the production of alloantibodies.6,10 Acquired hemophilia caused by the development of autoantibodies to factor IX can also occur.11 This rare condition can occurs most often in individuals with autoimmune disorders. These patients have bleeding symptoms similar to those seen in congenital hemophilia B.


Footnotes

1. Adcock DM, Kressin DC, Marlar RA. Effect of 3.2% vs 3.8% sodium citrate concentration on routine coagulation testing. Am J Clin Pathol. 1997 Jan; 107(1):105-110. 8980376
2. Reneke J, Etzell J, Leslie S, et al. Prolonged prothrombin time and activated partial thromboplastin time due to underfilled specimen tubes with 109 mmol/L (3.2%) citrate anticoagulant. Am J Clin Pathol. 1998 Jun; 109(6):754-757. 9620035
3. National Committee for Clinical Laboratory Standardization. Collection, Transport, and Processing of Blood Specimens for Coagulation Testing and General Performance of Coagulation Assays; Approved Guideline. 5th ed. Villanova, Pa: NCCLS; 2008. Document H21-A5:28(5)
4. Gottfried EL, Adachi MM. Prothrombin time and activated partial thromboplastin time can be performed on the first tube. Am J Clin Pathol. 1997 Jun; 107(6):681-683. 9169665
5. McGlasson DL, More L, Best HA, Norris WL, Doe RH, Ray H. Drawing specimens for coagulation testing: Is a second tube necessary? Clin Lab Sci. 1999 May-Jun; 12(3):137-139. 10539100
6. Adcock DM, Bethel MA, Macy PA. Coagulation Handbook. Aurora, Colo: Esoterix−Colorado Coagulation; 2006.
7. Cohen AJ, Kessler CM. Hemophilia A and B. In: Kitchens CS, Alving BM, Kessler CM, eds. Consultative Hemostasis and Thrombosis. Philadelphia, Pa: WB Saunders Co; 2002: 43-56.
8. Triplett DA. Coagulation abnormalities. In: McClatchey KD, ed. Clinical Laboratory Medicine. 2nd ed. Philadelphia, Pa: Lippincott Williams and Wilkins; 2002:1033-1049.
9. Chandler WL, Rogers GM, Sprouse JT, Thompson AR. Elevated hemostatic factor levels as potential risk factors for thrombosis. Arch Pathol Lab Med. 2002 Nov; 126(11):1405-1414. 12421150
10. Dimichele D. Inhibitors: Resolving diagnostic and therapeutic dilemmas. Haemophilia. 2002 May; 8(3):280-287. 12010424
11. Boggio LN, Green D. Acquired hemophilia. Rev Clin Exp Hematol. 2001 Dec; 5(4):389-404. 11844135

References

Adcock DM, Gosselin R. Direct oral anticoagulants (DOACs) in the laboratory: 2015 review. Thromb Res. 2015 Jul; 136(1):7-12. 25981138
Reijnen MJ, Sladek FM, Bertina RM, Reitsma PH. Disruption of a binding site for a hepatic nuclear factor 4 results in hemophilia B Leyden. Proc Natl Acad Sci USA. 1992 Jul 15; 89(14):6300-6303. 1631121

LOINC® Map

Order Code Order Code Name Order Loinc Result Code Result Code Name UofM Result LOINC
086298 Factor IX Activity 3187-2 086298 Factor IX Activity % 3187-2

For Providers

Please login to order a test

Order a Test

© 2021 Laboratory Corporation of America® Holdings and Lexi-Comp Inc. All Rights Reserved.

CPT Statement/Profile Statement

The LOINC® codes are copyright © 1994-2021, Regenstrief Institute, Inc. and the Logical Observation Identifiers Names and Codes (LOINC) Committee. Permission is granted in perpetuity, without payment of license fees or royalties, to use, copy, or distribute the LOINC® codes for any commercial or non-commercial purpose, subject to the terms under the license agreement found at https://loinc.org/license/. Additional information regarding LOINC® codes can be found at LOINC.org, including the LOINC Manual, which can be downloaded at LOINC.org/downloads/files/LOINCManual.pdf