Patient Test Information

Electrolytes

Also known as:

Lytes

Formal name:

Electrolyte Panel

Related tests:

Sodium, Potassium, Chloride, Bicarbonate, Comprehensive Metabolic Panel, Basic Metabolic Panel, Blood Gases, Osmolality, BUN, Creatinine, Glucose

Board approvedAll content on Lab Tests Online has been reviewed and approved by our Editorial Review Board.

Information on the Anion Gap can be found on the Common Questions tab.

Why Get Tested?

To detect a problem with the body's electrolyte balance

When to Get Tested?

As part of routine health screening or when your healthcare provider suspects that you have an imbalance of one of the electrolytes (usually sodium or potassium) or an acid-base imbalance

Sample Required?

A blood sample drawn from a vein in your arm

Test Preparation Needed?

None

How is it used?

The electrolyte panel is used to identify an electrolyte, fluid, or pH imbalance (acidosis or alkalosis). It is frequently ordered as part of a routine physical. It may be ordered by itself or as a component of a basic metabolic panel (BMP) or a comprehensive metabolic panel (CMP). These panels can include other tests such as BUN, creatinine, and glucose.

Electrolyte measurements may be used to help investigate conditions that cause electrolyte imbalances such as Dehydration, kidney disease, lung diseases, or heart conditions. Repeat testing may then also be used to monitor treatment of the condition causing the imbalance.

Since electrolyte and acid-base imbalances can be present with a wide variety of acute and chronic illnesses, the electrolyte panel is frequently used to evaluate patients both in the emergency room as well as hospitalized patients.

The electrolyte panel typically includes tests for:

  • Sodium–most of the body's sodium is found in extracellular fluid, outside of the body's cells, where it helps to regulate the amount of water in the body.
  • Potassium–this electrolyte is found mainly inside the body's cells. A small but vital amount of potassium is found in the plasma, the liquid portion of the blood. Monitoring potassium is important as small changes in the potassium level can affect the heart's rhythm and ability to contract.
  • Chloride–this electrolyte moves in and out of the cells to help maintain electrical neutrality and its level usually mirrors that of sodium.
  • Bicarbonate–the main job of bicarbonate (or total CO2, an estimate of bicarbonate), which is released and reabsorbed by the kidneys, is to help maintain a stable pH level (acid-base balance) and, secondarily, to help maintain electrical neutrality.

The results for an electrolyte panel may also include a calculation for anion gap (see Common Questions #1).

If a person has an imbalance of a single electrolyte, such as sodium or potassium, the health practitioner may order repeat testing of that individual electrolyte, monitoring the imbalance until it resolves. If someone has an acid-base imbalance, the health practitioner may also order tests for blood gases, which measure the pH and oxygen and carbon dioxide levels in an arterial blood sample, to help evaluate the severity of the imbalance and monitor its response to treatment.

When is it ordered?

An electrolyte panel may be ordered as part of a routine screening or as a diagnostic aid when a person has signs and symptoms, such as: 

  • Fluid accumulation (edema)
  • Nausea or vomiting
  • Weakness
  • Confusion
  • Irregular heart beat (cardiac arrhythmias)

It is frequently ordered as part of an evaluation when someone has an acute or chronic illness and at regular intervals when a person has a disease or condition or is taking a medication that can cause an electrolyte imbalance. Electrolyte tests are commonly ordered at regular intervals to monitor treatment of certain conditions, including high blood pressure (hypertension), heart failure, lung diseases, and liver and kidney disease.

What does the test result mean?

High or low electrolyte levels can be caused by several conditions and diseases. Generally, they are affected by how much is consumed in the diet and absorbed by the body, the amount of water in a person's body, and the amount eliminated by the kidneys. They are also affected by some hormones such as aldosterone, a hormone that conserves sodium and promotes the elimination of potassium, and natriuretic peptides, which increase elimination of sodium by the kidneys.

With respect to the amount of water in a person's body, people whose kidneys are not functioning properly, for example, may retain excess fluid. This results in a dilution effect on sodium and chloride so that they fall below normal concentrations. On the other hand, people who experience severe fluid loss may show an increase in potassium, sodium, and chloride concentrations. Some conditions such as heart disease and diabetes may also affect the fluid and electrolytes balance in the body and cause abnormal levels of electrolytes.

Knowing which electrolytes are out of balance can help a health practitioner determine the underlying cause and make decisions about treatment to restore proper balance. Left untreated, an electrolyte imbalance can lead to various problems, including dizziness, cramps, irregular heartbeat, and possibly death.

See the individual test articles on the components of the electrolytes panel for additional information on what results might mean:

Is there anything else I should know?

Certain drugs, such as anabolic steroids, corticosteroids, laxatives, cough medicines, and oral contraceptives, may cause increased levels of Sodium. Other drugs, such as diuretics, carbamazepine, and tricyclic antidepressants, may cause decreased levels of sodium.

Drugs that affect sodium blood levels will also cause changes in Chloride. Taking substantially more than the recommended dosage of antacids can also cause low chloride levels.

Some drugs may increase bicarbonate (total CO2) levels. These include, among others, fludrocortisone, barbiturates, hydrocortisone, loop diuretics, and steroids. 

Drugs that may decrease bicarbonate (total CO2) levels include methicillin, nitrofurantoin, tetracycline, thiazide diuretics, and triamterene.

Some diuretics, which may be used for people with disorders such as high blood pressure or kidney disease, tend to lower potassium levels to dangerously low levels. To avoid this problem, a health practitioner may prescribe a potassium-sparing diuretic.

A non-physiological cause of a high potassium level in a patient sample is leakage from the blood cells if the sample is not handled carefully or is delayed in transport to the lab. If a significant amount of potassium leaks from cells, it can contribute to a falsely high test result. When a healthcare provider suspects that a potassium result is not consistent with a patient's condition, the test for potassium may be repeated.

What is being tested?

Electrolytes are minerals that are found in body tissues and blood in the form of dissolved salts. As electrically charged particles, electrolytes help move nutrients into and wastes out of the body's cells, maintain a healthy water balance, and help stabilize the body's acid/base (pH) level.

The electrolyte panel measures the blood levels of the main electrolytes in the body: sodium (Na+), potassium (K+), chloride (Cl-), and bicarbonate (HCO3-; sometimes reported as total CO2).

A person's diet provides sodium, potassium, and chloride. The kidneys help maintain proper levels by reabsorption or by elimination into the urine. The lungs provide oxygen and regulate CO2. The CO2 is produced by the body and is in balance with bicarbonate. The overall balance of these chemicals is an indication of the functional well-being of several basic body functions. They are important in maintaining a wide range of body functions, including cardiac and skeletal muscle contraction and nerve impulse conduction.

Any disease or condition that affects the amount of fluid in the body, such as dehydration, or affects the lungs, kidneys, metabolism, or breathing has the potential to cause a fluid, electrolyte, or pH imbalance (acidosis or alkalosis). Normal pH must be maintained within a narrow range of 7.35-7.45 and electrolytes must be in balance to ensure the proper functioning of metabolic processes and the delivery of the right amount of oxygen to tissues. (For more on this, see the condition article on Acidosis and Alkalosis and also on Dehydration.)

A related "test" is the anion gap, which is a value calculated using the results of an electrolyte panel. It reflects the difference between the positively charged ions (called cations) and the negatively charged ions (called anions). An abnormal anion gap is non-specific but can suggest certain kinds of metabolic or respiratory disorders or the presence of toxic substances. For more information on anion gap, see Common Questions #1.

How is the sample collected for testing?

A blood sample is drawn by needle from a vein in the arm.

NOTE: If undergoing medical tests makes you or someone you care for anxious, embarrassed, or even difficult to manage, you might consider reading one or more of the following articles: Coping with Test Pain, Discomfort, and Anxiety, Tips on Blood Testing, Tips to Help Children through Their Medical Tests, and Tips to Help the Elderly through Their Medical Tests.

Another article, Follow That Sample, provides a glimpse at the collection and processing of a blood sample and throat culture.

Is any test preparation needed to ensure the quality of the sample?

No test preparation is needed.

  1. What is anion gap?

    Anion gap (AG or AGAP) is a value calculated using the results of an electrolyte panel. It is used to help distinguish between anion-gap and non-anion-gap metabolic acidosis. Acidosis refers to an excess of acid in the body; this can disturb many cell functions and should be recognized as quickly as possible, when present. The anion gap is frequently used in the hospital and/or emergency room setting to help diagnose and monitor acutely ill patients. If anion-gap metabolic acidosis is identified, the AG may be used to help monitor the effectiveness of treatment and the underlying condition.

    Specifically, the anion gap evaluates the difference between measured and unmeasured electrical particles (ions or electrolytes) in the fluid portion of the blood. According to the principle of electrical neutrality, the number of positive ions (cations) and negative ions (anions) should be equal. However, not all ions are routinely measured. The calculated AG result represents the unmeasured ions and primarily consists of anions, hence the name "anion gap." The most commonly used formula is:

    Anion Gap (AG) = Sodium - (Chloride + Bicarbonate [total CO2])

    However, there are other AG formulas, so reference ranges are not interchangeable. Each laboratory formula will have an established normal range that should be referenced.

    The anion gap is non-specific. It is increased when the number of unmeasured anions increases, indicating a state of anion-gap metabolic acidosis, but it does not tell the health practitioner what is causing the imbalance. The metabolic acidosis must be treated to restore the acid/base balance, but the underlying condition must also be identified and treated. Causes can include uncontrolled diabetes, starvation, kidney damage, and ingestion of potentially toxic substances such as antifreeze, excessive amounts of aspirin (salicylates), or methanol. A low anion gap can also occur; this is most commonly seen when albumin (an anion as well as a protein) is low, while immunoglobulins (cations as well as proteins) are increased.

  2. What is the treatment for an electrolyte imbalance?

    Treatment depends on which electrolyte(s) is out of balance and the extent of that change. Treatment usually involves managing the imbalance while identifying and addressing the underlying cause(s) of the imbalance and providing whatever support is necessary to the affected person.