Cell Free DNA Detection of Microdeletions: Microarray and FISH Follow-up with Unexpected and Complex Findings

S. Schwartz1, R. Pasion1, L. Gadi1, A. Penton1, K. Phillips1, J. Schleede1, R. Burnside1, J. Topperberg1, P. Papenhausen1, M. Kohan1, L. Platt1-3
1. Laboratory Corporation of America® Holdings/Integrated Genetics 2. David Geffen School of Medicine, UCLA, 3. Center for Fetal Medicine and Women’s Ultrasound, Los Angeles, CA

I. Introduction

Non-invasive prenatal genetic testing (NIPT) is a technology which detects fetal chromosomal anomalies by analyzing cell-free fetal DNA (cfDNA) in the blood of a pregnant woman. Since the introduction of testing of cfDNA in the maternal circulation into clinical practice in October of 2011, numerous series and advances have been reported. This technology has allowed clinicians to provide results for common aneuploidies (trisomy 21, 18, and 13) with a higher detection rate and lower false positive rate than traditional maternal serum screening tests. Numerous papers have been published that describe the efficacy of this test for the detection of autosomal aneuploidies. Most major professional societies in the area of obstetrics and genetics who previously recommended limiting testing with cfDNA for high risk population, now have also recommended making cfDNA screening available in all populations. As a result of deeper sequencing, several laboratories have recently introduced additional microdeletion testing as providing an additional benefit to this test. However, outcome data is limited and this test has not been endorsed for the detection of microdeletions, by any professional society to date.

The aim of this report is to review a large laboratory’s experience with Chorionic Villus (CVS) and amniocentesis samples obtained from patients that screened positive for a microdeletion on a cfDNA. The performance characteristics of each microdeletion that screened positive and had a follow up testing done by this laboratory is reviewed. Comparisons between initial cfDNA findings and follow-up testing will be made for those cases that had follow up testing with either CVS or amniocentesis.

II. Material and Methods

SPECIMENS AND ASCERTAINMENT: Chorionic villous or amniotic fluid samples were obtained for standard cytogenetic analysis, FISH, or microarray studies at the discretion of the referring provider. Cytogenetic and FISH studies were done using standard analyses. For microarray studies, amniotic fluid was set up as a direct (uncultured) specimens if 16 weeks or greater gestation and at least 15 mL of fluid was available. (If the gestational age was 17 weeks or greater, only 8 mL of fluid was needed.) For CVS tissue, direct specimens were analyzed if more than 5 mg of CVS material was available. For all direct specimens, back-up cultures were established and utilized in case of direct analysis failure. Cultures could be established from as little as 5 mL of amniotic fluid or 2 mg of CVS material.

All the specimens were placed into one of several microdeletion groups as follows: 1p36, 4p (Wolf-Hirschhorn syndrome), 5p (Cri-du-Chat syndrome), 15q11-13 (Prader-Willi or Angeleman syndrome), or 22q11.2 microdeletions as designated by the testing laboratories. Specimens were also grouped by the type of methodology utilized to detect microdeletions, when the information was available. These were broadly grouped into SNP versus non-SNP screen methodologies.

ARRAY METHODOLOGY: All studies were done utilizing the Affymetrix® Cytoscan® HD array [Affymetrix® and CytoScan® are Registered Trademarks of Affymetrix, Inc.]. This array contains approximately 2,695 microdeletions across the entire human genome. There are approximately 743,000 SNPs and 1,953,000 structural non-polymorphic probes (NPNPs). On the average there is approximately 0.88 kb between each marker. DNA was extracted utilizing standard methods and 250ng of total genomic DNA extracted was digested with NspI and then ligated to NspI adaptors, and amplified using Titanium Taq with a GeneCephr PCR System 9700. PCR products were purified using AMPure beads and quantified using NanoDrop 8000. Purified DNA was fragmented and biotin labeled and hybridized to the Affymetrix Cytoscan® HD GeneChip. Data was analyzed using Chromosome Analysis Suite. The analysis is based on the GRCh37/hg19 assembly.

The SNP array analysis is utilized to detect both copy number changes as well as copy neutral changes. This allows the detection of not only deletion and duplication, but also potential uniparental disomy and identity by descent. The presence of SNPs in the microarray also allows detection both of triploidy and complete moles with total homozygosity.

Figure 1: This figure demonstrates that the array analysis confirmed the deletion (a 11.49 Mb deletion in 1p) that was detected by the cfDNA studies, but it also demonstrates the presence of an additional abnormality, a 5.31 Mb contiguous to the deletion.

FREQUENCY OF ADDITIONAL ABNORMALITIES WHEN A MICRODELETION WAS CONFIRMED: Microarray analysis confirmed 24 of the 29 detected cases of microdeletions while the other 5 were confirmed by chromosome analysis/FISH analysis. Additionally, 10 (41.6%) of the 24 cases confirmed by microarray studies displayed additional or unusual findings likely yielding a phenotype that would not be consistent with a standard microdeletion (Table 1). Three patients had a duplication identified (derivative chromosomes) in addition to the microdeletion. Two patients had additional unrelated abnormalities (one deletion and one duplication). One patient had a contiguous duplication/deletion (Figure 1). Four patients had unusual microdeletions leading to unexpected phenotypes (one smaller deletion without the syndrome critical region and three larger deletions with more deleterious phenotypes, Figure 2).

Figure 2: This figure demonstrates that the array analysis confirmed the deletion (a 3.92 Mb deletion in 4p16.3-p16.1) that was detected by the cfDNA studies; however, this deletion does not contain the critical region for the Wolf-Hirschhorn syndrome. It was initially believed to be a variant of unknown significance.

III. Results

OVERALL POSITIVE PREDICTIVE VALUE AND FREQUENCY OF ABNORMALITIES:
Of the 335 microdeletions that were identified by cfDNA testing, subsequent diagnostic testing revealed that only 29 had a confirmed microdeletion (Table 1) yielding an overall positive predictive value (PPV) of 8.7%.

Ninety-seven of the samples were studied with CVS samples and 9 confirmed the presence of a microdeletion (PPV=9.3%) while 238 were with amniotic fluid samples, demonstrating 20 microdeletions (PPV=8.4%).

The number of cases ascertained for each microdeletion type varied from 9 cases (4p) to 180 (22q). Positive predictive values were determined for each type individually (Table 1).

Table 1

<table>
<thead>
<tr>
<th>CHROMOSOME</th>
<th>TYPE OF STUDIES</th>
<th>TOTAL (DELETED)</th>
<th>1P</th>
<th>4P</th>
<th>5P</th>
<th>15q</th>
<th>22q</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CHROMOSOME/FISH</td>
<td># (DELETED)</td>
</tr>
<tr>
<td>1P</td>
<td>10</td>
<td>22(2)</td>
<td>23(2)</td>
<td>8.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4P</td>
<td>0</td>
<td>9(4)</td>
<td>9(4)</td>
<td>44.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5P</td>
<td>11(1)</td>
<td>33(4)</td>
<td>44(5)</td>
<td>11.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15q</td>
<td>8(1)</td>
<td>71(4)</td>
<td>79(5)</td>
<td>6.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22q</td>
<td>56(3)</td>
<td>124(10)</td>
<td>180(13)</td>
<td>7.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>76(5)</td>
<td>259(24)</td>
<td>335(29)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PPV=6.6% PPV=9.3% PPV=8.7%

FREQUENCY OF DETECTING RUNS OF HOMOZYGOSITY IF A MICRODELETION IS NOT CONFIRMED:
Ten cases were detected that were not confirmed by the microarray analysis of 22q11 abnormalities which was 7.2%.

FREQUENCY OF DETECTING RUNS OF HOMOZYGOSITY IF A MICRODELETION IS CONFIRMED:
Ten cases were detected that were not confirmed by the microarray analysis of 22q11 abnormalities which was 7.2%.

FREQUENCY OF DETECTING AN ABNORMALITY IF A MICRODELETION IS NOT CONFIRMED:
Ten cases were detected that were not confirmed by the microarray analysis of 22q11 abnormalities which was 7.2%.

FREQUENCY OF DETECTING AN ABNORMALITY IF A MICRODELETION IS CONFIRMED:
Ten cases were detected that were not confirmed by the microarray analysis of 22q11 abnormalities which was 7.2%.

IV. Conclusions

This large follow-up study of 335 microdeletions positive on cfDNA studies has yielded an overall low positive predictive value. As reported, over 90% of the detected microdeletions were not confirmed using diagnostic testing. This is true whether the confirmation was by cytogenetics/FISH or microarray or whether the deletion was detected early enough for a CVS or later when an amniocentesis was used.

This study clearly shows that when a microdeletion was screen positive by cfDNA, not only is confirmation necessary, but the confirmation with a microarray is highly recommended. In addition to the needed microdeletion confirmation, the array provided useful information that the loss of chromosomal material had in 4P16.3-p16.1. This information would help to more precisely provide prognosis, then just knowing that an alteration was present. It also illustrates the importance of counseling following a screen positive result.

Lastly, our data suggest that another reason for a large number of false positives may be due to the underlying genomic structure. The percent of copy-neutral homozygosity in the 22q11.21 in patients with 22q deletion calls that were not confirmed by the microarray analysis was almost 14 times greater than our general clinical pediatric population seen in our laboratory (unpublished data) consistent with an underlying reason for some of the false-negative results.