LABupdate • []] [ja•]] [ja•]]

Diabetes Risk Index (DRI): Stratifying Risk Independent of Glycemic Status

The Diabetes Risk Index (DRI) measured on LabCorp's proprietary Vantera® platform, an automated nuclear magnetic resonance (NMR) clinical analyzer, combines selected lipoprotein and branched-chain amino acid (BCAA) parameters associated with insulin resistance into a clinically-actionable score (values 1-100) to help identify individuals with similar levels of glucose who differ in their risk of developing type 2 diabetes (T2D).

To help stem the growing epidemic of obesity and T2D, clinical practice guidelines recommend structured lifestyle modification and/ or pharmacological intervention for patients with a high-risk glycemic status (ie, prediabetes as defined usually by fasting glucose = 100-125 mg/dL or HbA1c = 5.7-6.4%).^{1,2} Since >80 million U.S. adults qualify as "high-risk" by glycemic criteria, a need has been recognized for a more refined approach to risk stratification, to improve cost-effectiveness by directing treatment to the subset of prediabetes patients at highest risk.³ Waiting until the onset of prediabetes before initiating preventive measures may also be suboptimal, since many individuals with normal glucose levels progress to diabetes in a relatively short time period.⁴ The DRI test assesses a patient's degree of insulin resistance, the core pathophysiologic defect that with time can lead to hyperglycemia caused by impaired insulin secretion resulting from loss of pancreatic β -cell function and mass. 5,6 By the time a patient reaches the threshold of prediabetes, up to 80% of β -cell function may already have been lost.5,6

The DRI score is calculated from the patient's measured Lipoprotein

Insulin Resistance Index (LP-IR)⁷ plus the concentrations of two branched-chain amino acids, valine and leucine.8 LP-IR and BCAA values both have been shown in multiple prospective clinical studies to predict the development of T2D independent of the level of glycemia.9-14

The LP-IR score, the main determinant of DRI, has been shown to be modifiable by drug and lifestyle interventions that produce weight loss and increase insulin sensitivity.¹⁵⁻¹⁷ Reductions of DRI and LP-IR are thus clinically achievable and likely to reflect a corresponding reduction of the risk of developing diabetes.

LabCorp offers the Diabetes Risk Index to aid clinicians with therapeutic decision-making based on a patient's risk of developing T2D independent of glycemic status.

Test Name			Test No.
Diabetes Risk Index (DRI)			123855
Cut Points	Men	Women	
Low risk	< 50	< 40	
Moderate risk	50 - 65	40 - 55	
High risk	> 65	> 55	
Methodology: Nuclear magnetic resonance (NMR)			
Platform: Vantera			

For the most current information regarding test options, including specimen requirements and CPT codes, please consult the online Test Menu at www.LabCorp.com.

References

6. DeFronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. *Diabetes*. 2009 Apr;58(4):773-795. 7. Shalaurova I, Connelly MA, Garvey WT, Otvos JD. Lipoprotein insulin resistance index: a lipoprotein particle-derived measure of insulin resistance. *Metab Syndr Relat Disord*. 2014 Oct:12(8):422-429.

8. Wolak-Dismore J, Gruppen EG, Shalaurova I, et al. A novel NMR-based assay to measure circulating concentrations of branched-chain amino acids: elevation in subjects with type 2 diabetes mellitus and association with carotid intima media thickness. *Clin Biochem*. 2018 Apr;54:92-99.

9. Mackey RH, Mora S, Bertoni AG, et al. Lipoprotein particles and incident type 2 diabetes in the multi-ethnic study of atherosclerosis. *Diabetes Care*. 2015 Apr.;38(4):628-636. 10. Dugani SB, Akinkuolie AO, Paynter N, Glynn RJ, Ridker PM, Mora S. Association of Lipoproteins, Insulin Resistance, and Rosuvastatin with Incident Type 2 Diabetes Mellitus: Secondary Analysis of a Randomized Clinical Trial. *JAMA Cardiol*. 2016 May 1;1(2):136-145.

11. Harada PHN, Demler OV, Dugani SB, et al. Lipoprotein insulin resistance score and risk of incident diabetes during extended follow-up of 20 years: The Women's Health Study. J Clin Lipidol. 2017 Sep-Oct:11(5):1257-1267.

12. Flores-Guerrero JL, Connelly MA, Shalaurova I, et al. Lipoprotein insulin resistance Index, a high-throughput measure of insulin resistance, is associated with incident type II diabetes in the Prevention of Renal and Vascular End-Stage Disease Study. J Clin Lipidol. 2019 Jan-Feb;13(1):129-137.e1. 13. Flores-Guerrero JL, Osté MCJ, Kieneker LM, et al. Plasma Branched-Chain Amino Acids and Risk of Incident Type 2 Diabetes: Results from the PREVEND Prospective Cohort Study. J Clin

Med. 2018 Dec 4;7(12). pii: E513.

14. Tobias DK, Mora S, Lawler PR. Altered branched chain amino acid metabolism: toward a unifying cardiometabolic hypothesis. *Curr Opin Cardiol*. 2018 Sep;33(5):558-564. 15. Ellsworth DL, Costantino NS, Blackburn HL, Engler RJ, Kashani M, Vernalis MN, Lifestyle modification interventions differing in intensity and dietary stringency improve insulin resistance through changes in lipoprotein profiles. *Obes Sci Pract*. 2016 Sep;2(3):282-292.

16. Fernández-Castillejo S, Valls RM, Castañer O, et al. Polyphenol rich olive oils improve lipoprotein particle atherogenic ratios and subclasses profile: A randomized, crossover, controlled trial. Mol Nutr Food Res. 2016 Jul;60(7):1544-1554.

17. Tuccinardi D, Farr OM, Upadhyay J, et al. Lorcaserin treatment decreases body weight and reduces cardiometabolic risk factors in obese adults: A six month, randomized, placebocontrolled double-blind clinical trial. Diabetes Obes Metab. 2019 Jun:21(6):1487-1492.

www.LabCorp.com

Reterences1. (3) Prevention or delay of type 2 diabetes: Standards of Medical Care in Diabetes – 2019. Diabetes Care. 2019 Jan;42(Suppl 1):529-533.2. Garber AJ, Abrahamson MJ, Barzilay JI, et al. Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the
Comprehensive Type 2 Diabetes Management Algorithm – 2019 Executive Summary. Endocr Pract. 2019 Jan;25(1):69-100.3. Ackerman RT. From Programs to Policy and Back Again: The Push and Pull of Realizing Type 2 Diabetes Prevention on a National Scale. Diabetes Care. 2017 Oct;40(10):1298-1301.4. Nichols GA, Hillier TA, Brown JB. Normal fasting plasma glucose and risk of type 2 diabetes prevention. J Clin Endocrinol Metab. 2011 Aug;96(8):2354-2366.5. DeFronzo RA, Abdul-Ghani MA. Preservation of β-cell function: the key to diabetes prevention. J Clin Endocrinol Metab. 2011 Aug;96(8):2354-2366.6. DeFronzo RA, Abdul-Ghani MA. Preservation of β-cell function: the new paradium for the treatment of type 2 diabetes for diabetes 2009 Apr;58(4):773-795